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Short time expansion for first passage distributions
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The probability that a stationary correlated Gaussian process does not cross zero in an interval bidength
computed to fifth order in by a short time expansion. The difficulties inherent in finding higher order terms
are discussed. The expansion is tested by simulations and comparison to some approximate results.
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I. INTRODUCTION agX+a 9 X+ - - - +apdfX=n(t), i)

The theory of Gaussian random processes is extremebyith a finite number of derivatives. In fact, the case in Eq.
well understood. It is used extensively in many branches ofl) is an example of a process that cannot be wrif@jnin
physics as a model for stochastic processes and as a startitig form of Eq.(2).
point for field theories. A zero average Gaussian process is If one is interested in the asymptotic behavioiFgt) and
uniquely defined through its correlation functi®@(t,,t,) X is close in some sense to the Langevin process
and any statistical property of the process can be written as a
functional of C. It is therefore somewhat surprising that the

problem of the firsft passage time distribution for a general,an one can use the perturbation expansion of Rfs0].
Gaussian process is unsolved. There is also an approximate nonperturbative method that

A first passage time problem is the time after which on&qis for exponentially decaying correlation functions with
of the coordinates of a trajectory of a dynamical system WI||a finite average zero crossing dendiiyplying that C”(0)

arrive fo_r the_ first time at a specified position. If a Qynamical existg. This approximation is known to give good results for
system is being perturbed by a stochastic term, it is natural tg, o \vhole distributiori11]. Finally, a method due to Ridd]
consider the probability that the coordinate returns to its ini<g +5 \write down formally a series whose terms are related to
tial value after a time [1]. This distribution is called the first the probability of having at least intersections in the inter-

return time distribution FRTD) of the coordinate. val. The terms in the series consist of Gaussian integrals with

) This kind, of problem ha§ important application; in Chem'complicated boundaries and difficult quadratic forms in the
istry and signal transmissiofil] and has been discovered exponent. To our knowledge, these terms have not been

recently to be related to the kinetic behavior of the Coarsen(':omputed beyond the first term. The method used in this
ing of phase ordering systenig]. In addition, some prob- a0t is related to this idea, but we believe it is simpler to
lems in interface depinning can be cast as first passage th

thlement.
problems[3,4]. The main result of this paper is E@4) for the probabil-

This paper concentrates on stationary Gaussian Processgshat a segment of sizedoes not contain a zero crossing.
X(t) with correlation functions that decay at least exponen- The paper is organized as follows. In Sec. Il we describe

tially for long times and that possess an expansion in POWErR e short time expansion and compute it to orferin Sec.

X+ aX=7 3)

2.
of 7% Il we compare these exact results to known approximate
results and to simulations. Section IV concludes and dis-
(X(OX(t+ 7)) =C(1)=1+Cor2+Cym*+Cer®+ - - - . cusses some methods to extend these results.
(o
II. SHORT TIME EXPANSION
The question is what is the probabiliB(t) that an interval A. General considerations
of size t is free of a zero crossing[that is The problem of whether an interval is crossing-free is the
X(7)>0 for 0<7<t]. same as whether a sample pattis all above or all below

_ This question has a long history, and has been approachgg g in the interval. Let us assume without limiting the gen-
in different ways. If the Gaussian process can be cast as &ajity that we want to know if the path telowzero. It is

finite dimensional Fokker-PlandleP) equation, the problem g ficient to check if thenaximumalong the path is negative,
becomes one of finding the solution of the FP equation withhance

a set of nontrivial boundary conditior}§]. If one is inter-

ested in long time asymptotics, one must extract the lowest 1

lying eigenvalue of the FP operator with these boundary con- 5 F(1)=Prol{Xpa<0), (4)
ditions. Not only is this a formidable tagl6,7], but it pre-

cludes discussion of cases where the Gaussian process cavith Xy,a,=max. ;o X(t). The factor3 takes into account
not be written as a stochastic differential equation of the typehe symmetric case where the path is above Zeravhich
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case we ask for the probability thi,,,>0). We note in (atleast if the slope is positiyso this case will contribute to
passing that the problem of first passage is related to thg: and higher terms in the expansion.

problem of finding the extremum of a random éie path. If, instead, #;~t but ,~1 we must treaty, as a pa-
This kind of “ground state” problem has been treated exten+abola plus corrections that may be treated perturbatively. It
sively in the theory of disordered systefi®], and the first is impossible to reach the parabola maximum perturbatively
passage time problem could perhaps be discussed within thigom the linear approximation since we only consider the end

framework[13]. In any case, a knowledge of points. Notice that the amplitude of the maximum of such a
parabola is of order? and the probability of this everte.g.,
P(Xima = ((Xmax— maxX(t))) (5)  y,~t) is of ordert so we expect this event to contribute to
rel0f] the z; term (and highey in the expansion.

A similar consideration shows that the cage~t? and
,~t occurs with probabilityt® and with amplitude® so it
1 0 appears only in theg term. This means that our expansion is
EF(t):f dXP(X). (6)  accessible up to ordeP by expanding only around the ex-

- tremum of a parabola.
We see that the difficulty in generating a short time ex-

B. The expansion pansion is due to the need to find the extrema of polynomials
of higher and higher order. This is an intractable problem for
high order polynomials and becomes quite complicated even
for a third order polynomial. The program is to consider only
the case of corrections around a parabolic peak inside the

yields F(t) via an integration

We now make the following observation: For a very short
interval, the random proce¥scan be approximated by a few
terms in its Taylor series,

X(7)=ho+ Ty + PPyt Tohg+ - - . (7)  interval. This will generate an expansion that is correct to
ordert®.
The form of Eq. (1) ensures that the coefficients
U= (1In!) dyX(t)|;=o are well defined Gaussian variables. C. The parabolic peak

Their (cross correlations can be deduced using ER. and . . .
we will discuss them later. For the moment, we need to find We now con_S|der the case where a single maximum oc-
the probability that a polynomial with random coefficients curs mgd_e the m_terval. As noted above, for the maximum to
does not vanish in the intervaDt]. If we assume without occur inside the interval we must hayg~t. To keep track

limiting the generality thatyy<<O this is equivalent to find- of the expansion we define

ing the probability thai .= max.q 4 X(t) is negative. b=ty (10)
We want to findX,,,, in powers oft. Formally we write
Xmax= ot 121 (1,002, 03, - . ) +Zo(Y1, 2,803, - . ) UZ%, (12)
+... (8)
. ] ] so that
where there is no dependence in the, functions(we also
defineX= 3+ Y for convenience The distributionP (Xa Y=t2(U¢y+ Ui+ tudyg+t2u, + t3ubips+ - - ).
is defined as (12
P(Xmax) = 0(Xmax— 0= Ymad ) The extremum of such a parabola occurs at
which may be expanded ¥y, u* =ud +tul +t2uf +5u+ - (13
P(Xma = < S(Xmax— ¢0)> - axmax<Ymax5(Xmax_ ¢O)> with
2 | Yinex ¢
+dx 5 0 Xmax— o) )+ . ) u*:__l
max\ 2 0 21,/}2’
We see that we need to develop a method to compute mo- 362
ments ofY . IN powers oft. ut = — P1¥3
We would like to proceed perturbatively. We will ignore ! 8y, '
the possibility that/,>1 because thg's are Gaussian ran-
dom numbers with variances of order one, so the probability . ¢f 5
of this event is very small. We will only consider cases for u;=- W(9¢3—4¢2¢4),
2

which ¢'s are order one or smaller.

If we have;>t (an event that happens with a probabil- 4
ity that approaches 1 for smdll, we can approximat¥ . by ut=— 59, (2742 — 244y thratha + 472 4bs) (14)
a straight line and treat the rest of the contributions as a 3 12848 8 27374 T 2T
small perturbation. This means thét,,, occurs at one of the

end pointsr=0,t. The value ofY . is of ordert in this case  which gives
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2 P b1
Yy =t? _4_¢12_t8_1¢//§+t26T¢;§’(4¢2¢4_9¢§)
-3 i (2T43— 28234+ AY5¢s) | (15)
128’#; 3 2¥Y3¥4 2¥5 .

REUVEN ZEITAK 56

| 1oawdu= [ oorawds,

B
- fo (YO AP dy,

In order for the extremum to be in the right range wewith 8= — (ty,+t?¢ys+t34,+t* s+ - - -). Both integrals

demand that

o<u*<1. (16

can be easily expanded in powerstdhote thatg is smal).
This is just the linear approximation. Now we want to con-

sider theJ,, terms. For this we have to expand the constraint

0<u*<1. Recalling Egs(13) and (14), we see that the

In addition we want the extremum to be a maximum so welower bound implies¢;>0 (since ¢,<0); for the upper

demand that

¥,<0. (17)

Clearly the expansion fou* and Y* can be continued to
higher order. In order to be systematictiit is necessary to

bound we can solve fop; such thatu*(¢7)=1. An ex-
pansion int yields

b1 =—2¢,—t(3ha) —t*(4¢h) —t%(5¢5) (23

so we have the constraint

include terms due to the third order polynomial peak as well.

However, even without considering nonperturbative terms

0< 1< —[ 2ty +t2(3ha) + t3(44hg) +t*(5¢h5) + - - - ].

due to the cubic, higher orders for the quadratic alone can (24)

still be useful since they produce an upper bound-oiThis

point is discussed in the discussion.

D. Expansion for Y ax

To ordert® we have

Ymax= 0(Y0) Y+ Qo 1(U*) (= ) [ Yeye — 6(YD) Yil,
(18)

which encodes the fact that the maximum is either at one of
the interval ends or in the middle of the interval if a qua-

In order to evaluate
JIn=Q0.1(u*) 0(— ) [ (Yiux)"— O(Y)(Y)"]

we gauge its effect on a test functiéy ¢,),

J A(lffl)Jnd‘Pl:fA(lﬁl)Qo,l(U*)g(—l//z)

X[(Yeue)"= 0(Y) (Yo)"]dey

dratic maximum is in the interval. We have defined the func-

tion
Q,p(z)=1 for a<z<b and O elsewhere. (19)
Since we need the moments ¥f,,, we note that
(Yma)"={0(Y)[1— 0(— ) Qg 1(U*)]Y;
+ Q02 (U*) (= h) Yigx "
= 0(YO[1= 0(— h2) Qo 1(U*)](Y))"+ Qg 5(U*)

— 0= [ A dn,

—8(— ) J B“(Yt)“Awl)dwl,

With a=—[ 2t +t3(3¢5) + t3(44,) +t4(5ehs) + - - - 1.
Now an expansion it is straightforward, leaving us with

Y max=tL 1 0(1) 1+ 2L 20( 1) ]

XO(=th2) (Yeu)", (20 11
i | abyn) + | 5+ 0= ) | S(4)
due to the projection properties éfand ().
Thus we define 4 1
Tt pa0(h) + hoips| 1+ 59(_1,02) (1)
Ih=0(Y)(YD)" (21)
1 6(—¢o)
3( = '
and + ¢2 6 + 6 é (lﬂl)
In=Qoa(U*) 0(—= ) [ (Yeux)" = O(YD(YD"], (22 5 o1 2
) s 0( i) + b3 E"'ga(_l//z) o(i1)
with Y= 1n+Jn. Since we are interested in computing the
averages in Eq(9), we need to know how to integrate 3
Y ax Over functions ofyy . The main problem is thé and F ot 1 3‘9(_ 2) | 8(4h)
) constraint functions. We can treat this systematically for 1 7
smallt. Let us consider the integrals bf,J, over test func- 2, (2 D ,
tions of wl' + ¢2lr/13 2 + 100( lﬂz) ) (llll)
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1 11
4 = = _ r 71 1
Tl ot 1200( lﬁz))g(%)}a (25 (Ymaxd(X—thg)) = t\/2—L00+t 2'—
(Yimad 2= 2L 00) W21+ [ 200102 0( ) ] , 3 1 /'—20 Tzo)
+t Loot =y =
LB+ 2992) 6(y)] V2m 2 yleml 2 6
5 1 ?’?
(2¢2¢p3+24p14p4) 6(1h1) +t4 =L )+t5 —L
2 0,1 \/Z 0,0
1
+ 43 ———0( lﬂz)}&%)] (26) (73) (L00+ 2Too) 1 (L
1,1
) 71V V
(Ymad = CLY70( ) 1+ 391020 4y)] aT,,
AR
+HO[(3yayi+3yiva) (Y], (27) 5 )
(Ymad *=t[ 4100y 1+ L 403020()],  (28) _( Leo, 7T2,0) 7
2 10 12
(Yona*= LG5 0(0)]. (29 (vo"vem
This result is quite general, and is independent of our as- _(ﬂq 11T4,°> 1 (38)
sumption thaty, are Gaussian random variables. In the fol- 24 120 J(yH3\2m7|
lowing section we shall assume thgt are indeed random
Gaussian variables witfcross correlations that are implied (Y2ud(X— o))
by Eq. (2).
:tz(ﬁ)zL o(X)+t3—2ﬁ Laot ] 719300t oL )
E. Averages 2 O N Y1Yibo0T 520
We will now proceed to compute averages of the type 5 1 L oT
(Y7 ax®Kinax— o) )- We write schematically |—10 7’1 /ﬂ’_ 3'0) '
30 \/ V2 yi\/ZW\ 3 5
o= 7o, (39
1=y1im, (31)
Lo N X ) =8 20m° L L300
V2= Yoot Va2, (32 ma 0 J2m %° 2
Ys=Yim+ ¥ims, (33 +t5<3L20 7 e(m 1 )
Ya=YomoT Yam2t ¥ana, (39 V2 V2
(40)
Ys=YVim+ vanat v2 s, (39 1 L
. 4 43( Y1) 5 8(y1)°
where(#;7;)=38; The values ofy] in terms ofcy of the (Ymad(X—tho)) =t"—5—Logt L1 N (41)
correlation functiof Eq. (1)] will be given in Appendix A. It &
is useful to make the definitions (y1)5
Ye S(X— 58— Ly, 42
(TS~ 0) =L, (39 (Ymal(X=d0)) =t~ 5" Loo 42
(P3P0 — ) (X — o)) =T m: (37) All the integrations and substitutions are best left to a
’ computer algebra packagi this caseMATHEMATICA ).
whose explicit values are given in Appendix B. We find We get that
|
L= 1—ﬁt+127°(71)2+4(h)4 L2yin-702)% ,, (Z[09°7] vori %D (0° ¥ond
2 2 2@ 247177 2m 2 2m 10w 2w

(VD*71 %7 7i(79)?  80(yD)*¥i—68y171(75)*— 21 )"+ 104 y1)*¥3 73+ 56(¥)*(73)?
2r 10y;m 4w 160 y7) 3

(43
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This expression becomes much simpler when written inc(1)=1/cost  but

terms of the correlation function’s coefficients

J—2c 6C4—Cy°
F(t)=1- 2t —2 2 3
w 12— 2c,7

. 43c,*— 260c,%c,— 20c,2+ 80c,Cq

160\/ - 2C2C27T

t°+ h.o.t.,

(44)
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mistakenly  attributed
=1/coshl/2) due to a misprint.

In order to compare to the exact expression, we recall that
F(t) is the probability that the interv@D t] is free of cross-

ings, so it can be expressed as

to C(l)

p— 1 “
F(t)_@jt (x—t)p(x)dx, (50)

with (x)= [{xp(x)dx=m/\/—2c, the average free interval

where h.o.t. represents higher order terms. This is the maisize.
result of this work. The first order term is exactly the density Thus
of crossings. This is as expected since if the size of the

intersection becomes infinitesimal, the probability of no

p(t)=()F"(t)

crossing tends to 1 with a correction that is equal to the

interval lengtht divided by the average distance between

crossingg(l). Hence we expect

t
F(t)=1— —+h.ot.

0 “9

The cubic and quintic terms to our knowledge have not bee

computed before.

Ill. COMPARISONS

It is instructive to compare the exact expansion to the
approximate results of Refl1]. In that work, the authors

co— 6(:4t+ — 435+ 26Qc5c,+ 20c2— 80c,Cq t3
4c; 16¢5

+h.o.t. (5

I11\Iotice that the first term of the approximate expres$us)

agrees with the exact expression, but the next term is differ-
ent. For example, for the correlation function given above,
C(l)=1/cost/2, we find that

t 253
P()=c+ —mt - .

8 192 (52

have an approximate closed formula for the Laplace trans-

form of the probabilityp(t) to find a spacing of sizé be-
tween consecutive zero crossings.

1-[A%P,(\)—A]p’(0)
1+[A%P.(\)—A]p’(0)

B()\)approx: ) (46)

whereP_ (\) is the Laplace transform d®, (t), the prob-

ability thatX(0)X(t) >0. In terms of the correlation function

C(t) one has

~ _ 1 1 (= -l c’(l) |
P+()\)—X+H o e —md (47)

(see Ref[11] for detailg. The expression fop(t), Eq. (46),
can be inverted for smatl (that is, large\) to yield

2
c5—6¢Cy
p(t) approx— 4—02t

—17c%+108c2¢c,+ 15602 — 480c,C
n 2 et 2%y hot.
96¢3

(48)
The result of this expansion f@(l)=1/coshl/2) is

I_| 313 155
P(D=3~ 128" 2006

T (49)

In addition, we have performed some simulations to find
the crossing distribution for several Gaussian processes. We
considered a fifth order polynomial with Gaussian random
correlated coefficients of the typ@) that are defined via
Appendix A. Figure 1 plots the probability density to find the
first zero crossing at a given tinferhich is just—F'(t)] and
the expansion of F'(t) to ordert®. A very good agreement
is found in the rang¢0,0.8].

The increase in the simulated estimateFd{t) that ap-
pears aftert~0.9 may appear puzzling since according to
Eq. (500 —F'(t)=(1x))[{(t)p(x)dx which is clearly
monotonically decreasing. The resolution of this is to recall
that the Gaussian process that is being simulated is only a
polynomial approximation to a stationary process, accurate
for short times, for larger times it is a nonstationary process
and the probabilityp(t) to find a spacing of sizé between
consecutive zero crossings is defined only for stationary pro-
cesses. The correct interpretation-of ' (t) is the probabil-
ity density to find the first zero crossing beyohd0 at a
given time. This object need not be monotonic.

IV. DISCUSSION

A major shortcoming of the expansion derived in this
work is the difficulty in calculating higher order terms. Fol-
lowing the method described above, one needs to integrate
over the volume in the phase space of polynomial coeffi-
cients for which a polynomial never crosses zero in the in-
terval[0t]. The function to integrate over is a multivariate

This expression is slightly different than the one given inGaussian with a quadratic form determined from the corre-

Ref. [25] of [11] where Eq. (48 was computed for

lation function of the original problem. The shape of this
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0.002 T T T

FIG. 1. The probability that the first zero
crossing (after t=0) occurs att versus t.
The random processes used are polynomials of
order 7° with coefficients ¢, ... ¢ that are
Gaussian variables of fort80) with y's given
by Eg. (A4). The correlation functions taken are
C(t)=1/Jcosh{/2) (circles and C(t)=1/
cosh{/2) (squares The averages were
performed over several tens of ®10f realiza-
tions. The solid lines are the results predicted
by Eg. (44). The expansions are, respect-
ively, —F'(t)=0.056 269 8-0.002 637 68
—0.000563247%" and —F'(t)=0.0795775
—0.004 973 76 —0.002 590 3#. Each graph
is shown with the zeroth order term subtracted.

-0.002

p(t)-p(0)

-0.004

-0.008
0.

region in phase space becomes increasingly complicated d#is is a trivial observation: for all points to be positive, the

higher orders irt are probed. This limits the feasible number two end points must be positive. A more sophisticatieat

of terms that can be obtained using this method. It would beot rigorous way of using this information was given in

difficult if not impossible to calculate enough terms to ex-[11].

tract via Padepproximants or other methods the asymptotic The single peak contribution cannot be resummed so eas-

exponential decay rate expected foft) [11]. ily, although a perturbation expansion can be produced quite
Although nominally the expansion is for short times, we straightforwardly to higher orders. Such a series should pro-

can also view the expansion as ondghe number of extrema duce a more stringent bound on tRé&) and is much simpler

inside the region. If there are n@ocal) extrema inside the technically than the full expansion. In addition, an estimation

region, it is sufficient to consider the end points. We thenof the asymptotic decay rate of this series can produce a

might use better bound on the asymptotics Bft). Such an expansion
is beyond the scope of this paper.
Yomxeak: 6(Y,)Y, (53) Finally, it would be interesting to try and apply this

method to cases in which the Gaussian process is a sygace
random “sheet’). Instead of asking about intervals in which
the walk is positive, one asks about connected regions that
are all positive(“islands”). This problem is known to ex-
hibit some interesting featur¢44]. This method, if it could

pe extended, could shed some light on this problem.

to compute(either exactly or by perturbationshe value of
FO-Peat). For one extremum, the parabolic approximation
is sufficient etc. This is equivalent to performing a partial
resummation and is an upper bound B(t). This can be
seen by recalling that we are computing the probability tha
all the (local) extrema that we have considered are negative.

Taking into account more extrema can only decrease this ACKNOWLEDGMENTS
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(54) APPENDIX A

X
cos'(6)+2[1~ C(1)][sin’(6) +sin(9)cos 0)] In this appendix we decompose a Gaussian process

or X(7) with a correlation function
(X()X(t+ 7)) =C(7) =1+ Com?+Cym+Ca7+ - - -
FO-peakt)—=1— Earcta 1-¢ (55) (A1)
m 1+C(t)) _
into

whose large asymptotics yields X(7)= tho+ 7ihy + iyt gt - -+ | (A2)

where ¢,’s are correlated Gaussian random variables. We

2
F(H)<—C(1) for large t. 50 see that
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(X()X(1))=(g) + (e+ T){(hothr) Lom={(76X+ ¥3m2)"(¥oX+ Yamp+ y3n4>m>Po(X>(, )
B3
+[re(yd) + (€4 ) (o) ]+ - - .
(A3) Tom={(¥6X+ ¥372)" (YoX+ Yo7+ ¥47)"
2 2
By expanding ine and comparing t€(7— €) we see that X O(—voX=v512))Po(X). (B4)
Y have the form30) with y's given by For the values oh,m that are required for our expansion we
yi==2c,, have
_y2
Y6=Co, Loo=e *"\2m,
_ .2
y2=\/6c,— (12)2, L10= ¥oXLoo(X),
V= —dcalyt, Loo=[(75%)*+(73)?]L ool X),
— 2v/\3 2 2\2
y3=\=20ce— (Y%, L3o=[(76X)"+3v5X(72)“]Loo(X),
Yi=ca, Lao=[(76X)*+6(%5X)%(72)?+3(72) *Lod X),

_ A
¥5=(15C6—~ v575)! 75, Lo1= ¥oXLoo X),

(2Aw2 2 4
Y= J70c5— (¥4 7= (732, L11= (770Xt v272) Lod X),

73=(=58c— ()73, Ta0=[(76X)2F0(X) +295¥3X LX) +(¥3)2F2(X) JLool X),
o=~ 255, ag)  Tao=[(78X)30(X) +3(75X)25F LX) + 375X (73)f2(X)
+(73)*3(X) 1L oo X),

Note that demanding real values for this imposes a set of
constraints on the coefficients of the correlation function.

_ 2v/\4 2313, 2
These “realizability” constraints are due to the fact that the Tao=[(voX)"TO(X) +4(¥5X)" 721 1(X)

eigenvalues of the correlation matrix must all be non- +B(v2X)2( v2)2F2(X) + Av2X( v2)3F3(X
negative in order to ensure the normalizability of the Gauss- (70X)7(72)T2(X) + 476X (72)"13(X)
ian process. +(¥H)*4(X)Loo( X),
APPENDIX B T1=[757eX?F0(X) + X(¥5v5+ ¥3 v F1(X)
The integrals + ygygfz(x)]Loo(x), (B5)
(P 8(X= o)) =Ly m, (B1)  \where we have defined the functions
(P 0(— ) S(X—= o)) =Ty m (B2 1 (2052 )
. fk(X)= — f 0T T2y ke =y T2gy, (B6)
are given by V2m ) =
[1] S. Chandrasekar, Rev. Mod. Ph{$, 1 (1943; W. Feller,An Z. Olami, inPhase Transitions and Relaxation in Systems with
Introduction to Probability Theory and its Applications 2nd Competing Energy Scale¥ol. 415 of NATO Advanced Study
ed. (John Wiley & Sons, New York, 1971S. O. Rice, re- Institute, Series B: Physicedited by T. Riste and D. Shering-
printed inSelected Papers in Noise and Stochastic Processes  ton (Kluwer, Dordrecht, 1998 p. 359.
edited by N. Wax(Dover, New York, 1954 [5] M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phyg, 323
[2] A. J. Bray, B. Derrida, and C. Godree, Europhys. Let27, (1945, reprinted in the book edited by N. Wax, Ré1.
175(1994; B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. [6] M. A. Burschka and U. M. Titulaer, J. Stat. Phy&5, 569
Lett. 75, 751(1999; J. Stat. Phys85, 763 (1996. (1981); 26, 69 (1981).
[3] Z. Olami, I. Procaccia, and R. Zeitak, Phys. Rev5E 3402 [7] T. W. Marshal and E. J. Watson, J. Phys18, 3531(1985;
(1995. 20, 1345(1987.

[4] I. Webman, Philos. Mag. B6, 743(1987; and(unpublisheg [8] The reason for this is that a process of ty@ghas a correla-



SHORT TIME EXPANSION FOR FIRST PASSAGE ... 2567

tion function whose Fourier transform has a finite number of [9] V. Hakim and R. ZeitaKunpublisheg
poles inw. This means that the correlation function can be[10] S. N. Majumdar and C. Pire, Phys. Rev. L&, 1420(1996.
written as a finite sun€(t) ==, ,Ace . This expression [11] B. Derrida, V. Hakim, and R. Zeitak, Phys. Rev. L&, 2871

cannot have a Taylor expansion purely in terms%fFor this (1996; S. N. Majumdar, C. Sire, A. J. Bray, and S. J. Cornell,
kind of correlation function, the expansion given in E@) ibid. 77, 2867 (1996.

will eventually break down due to the existence of terms of the[12] Spin Glass Theory and Beyanetdited by M. Mezard, G. Pa-
type 7"Syy(7) whereSy(7) has a correlatioSy,(71) Sn(72)) risi, and M-A. Virasoro(World Scientific, Singapore, 1987

~min(r,7). The expansion method described here is €X[13] R. Zeitak (unpublished

pected to work until these terms start appearing in the eXPaM14] 7. Olami and R. Zeitak, Phys. Rev. Le®t, 247 (1996
sion. ) . . , .



