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Short time expansion for first passage distributions

Reuven Zeitak
Ecole Normale Supe´rieure, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231 Paris Cedex 05, France

~Received 28 March 1997!

The probability that a stationary correlated Gaussian process does not cross zero in an interval of lengtht is
computed to fifth order int by a short time expansion. The difficulties inherent in finding higher order terms
are discussed. The expansion is tested by simulations and comparison to some approximate results.
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PACS number~s!: 02.50.2r, 05.40.1j
e
o
r
s

as
e
ra

n
i
a
l

in
t

m
d
en

tim

s
en
e

ch
as

it

e
o

c
yp

q.

that
th

or

to

ith
he
een
this
to

g.
ibe

ate
is-

the

n-

,

I. INTRODUCTION

The theory of Gaussian random processes is extrem
well understood. It is used extensively in many branches
physics as a model for stochastic processes and as a sta
point for field theories. A zero average Gaussian proces
uniquely defined through its correlation functionC(t1 ,t2)
and any statistical property of the process can be written
functional ofC. It is therefore somewhat surprising that th
problem of the first passage time distribution for a gene
Gaussian process is unsolved.

A first passage time problem is the time after which o
of the coordinates of a trajectory of a dynamical system w
arrive for the first time at a specified position. If a dynamic
system is being perturbed by a stochastic term, it is natura
consider the probability that the coordinate returns to its
tial value after a timet @1#. This distribution is called the firs
return time distribution~FRTD! of the coordinate.

This kind of problem has important applications in che
istry and signal transmission@1# and has been discovere
recently to be related to the kinetic behavior of the coars
ing of phase ordering systems@2#. In addition, some prob-
lems in interface depinning can be cast as first passage
problems@3,4#.

This paper concentrates on stationary Gaussian proce
X(t) with correlation functions that decay at least expon
tially for long times and that possess an expansion in pow
of t2:

^X~ t !X~ t1t!&5C~t!511c2t21c4t41c6t61••• .
~1!

The question is what is the probabilityF(t) that an interval
of size t is free of a zero crossing @that is
X(t).0 for 0,t,t#.

This question has a long history, and has been approa
in different ways. If the Gaussian process can be cast
finite dimensional Fokker-Planck~FP! equation, the problem
becomes one of finding the solution of the FP equation w
a set of nontrivial boundary conditions@5#. If one is inter-
ested in long time asymptotics, one must extract the low
lying eigenvalue of the FP operator with these boundary c
ditions. Not only is this a formidable task@6,7#, but it pre-
cludes discussion of cases where the Gaussian process
not be written as a stochastic differential equation of the t
561063-651X/97/56~3!/2560~8!/$10.00
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a0X1a1] tX1•••1an] t
nX5h~ t !, ~2!

with a finite number of derivatives. In fact, the case in E
~1! is an example of a process that cannot be written@8# in
the form of Eq.~2!.

If one is interested in the asymptotic behavior ofF(t) and
X is close in some sense to the Langevin process

X1] tX5h ~3!

then one can use the perturbation expansion of Refs.@9,10#.
There is also an approximate nonperturbative method
works for exponentially decaying correlation functions wi
a finite average zero crossing density@implying that C9(0)
exists#. This approximation is known to give good results f
the whole distribution@11#. Finally, a method due to Rice@1#
is to write down formally a series whose terms are related
the probability of having at leastk intersections in the inter-
val. The terms in the series consist of Gaussian integrals w
complicated boundaries and difficult quadratic forms in t
exponent. To our knowledge, these terms have not b
computed beyond the first term. The method used in
paper is related to this idea, but we believe it is simpler
implement.

The main result of this paper is Eq.~44! for the probabil-
ity that a segment of sizet does not contain a zero crossin

The paper is organized as follows. In Sec. II we descr
the short time expansion and compute it to ordert5. In Sec.
III we compare these exact results to known approxim
results and to simulations. Section IV concludes and d
cusses some methods to extend these results.

II. SHORT TIME EXPANSION

A. General considerations

The problem of whether an interval is crossing-free is
same as whether a sample pathX is all above or all below
zero in the interval. Let us assume without limiting the ge
erality that we want to know if the path isbelowzero. It is
sufficient to check if themaximumalong the path is negative
hence

1

2
F~ t !5Prob~Xmax,0!, ~4!

with Xmax5maxtP[0,t]X(t). The factor 1
2 takes into account

the symmetric case where the path is above zero~in which
2560 © 1997 The American Physical Society
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56 2561SHORT TIME EXPANSION FOR FIRST PASSAGE . . .
case we ask for the probability thatXmin.0). We note in
passing that the problem of first passage is related to
problem of finding the extremum of a random set~the path!.
This kind of ‘‘ground state’’ problem has been treated exte
sively in the theory of disordered systems@12#, and the first
passage time problem could perhaps be discussed within
framework@13#. In any case, a knowledge of

P~Xmax!5^d„Xmax2 max
tP[0,t]

X~ t !…& ~5!

yields F(t) via an integration

1

2
F~ t !5E

2`

0

dXP~X!. ~6!

B. The expansion

We now make the following observation: For a very sh
interval, the random processX can be approximated by a few
terms in its Taylor series,

X~t!5c01tc11t2c21t3c31••• . ~7!

The form of Eq. ~1! ensures that the coefficien
cn5(1/n!) ] t

nX(t)u t50 are well defined Gaussian variable
Their ~cross! correlations can be deduced using Eq.~1! and
we will discuss them later. For the moment, we need to fi
the probability that a polynomial with random coefficien
does not vanish in the interval@0,t#. If we assume without
limiting the generality thatc0,0 this is equivalent to find-
ing the probability thatXmax5maxte[0,t]X(t) is negative.

We want to findXmax in powers oft. Formally we write

Xmax5c01tz1~c1 ,c2 ,c3 , . . . !1t2z2~c1 ,c2 ,c3 , . . . !

1••• , ~8!

where there is not dependence in thezn functions~we also
defineX5c01Y for convenience!. The distributionP(Xmax)
is defined as

P~Xmax!5^d~Xmax2c02Ymax!&,

which may be expanded inYmax,

P~Xmax!5^d~Xmax2c0!&2]Xmax̂
Ymaxd~Xmax2c0!&

1]Xmax

2 K Ymax
2

2
d~Xmax2c0!L 1••• . ~9!

We see that we need to develop a method to compute
ments ofYmax in powers oft.

We would like to proceed perturbatively. We will ignor
the possibility thatcn@1 because thec ’s are Gaussian ran
dom numbers with variances of order one, so the probab
of this event is very small. We will only consider cases f
which c ’s are order one or smaller.

If we havec1@t ~an event that happens with a probab
ity that approaches 1 for smallt), we can approximateYt by
a straight line and treat the rest of the contributions a
small perturbation. This means thatYmax occurs at one of the
end pointst50,t. The value ofYmax is of ordert in this case
e
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~at least if the slope is positive! so this case will contribute to
z1 and higher terms in the expansion.

If, instead,c1;t but c2;1 we must treatYt as a pa-
rabola plus corrections that may be treated perturbatively
is impossible to reach the parabola maximum perturbativ
from the linear approximation since we only consider the e
points. Notice that the amplitude of the maximum of such
parabola is of ordert2 and the probability of this event~e.g.,
c1;t) is of ordert so we expect this event to contribute
the z3 term ~and higher! in the expansion.

A similar consideration shows that the casec1;t2 and
c2;t occurs with probabilityt3 and with amplitudet3 so it
appears only in thez6 term. This means that our expansion
accessible up to ordert5 by expanding only around the ex
tremum of a parabola.

We see that the difficulty in generating a short time e
pansion is due to the need to find the extrema of polynom
of higher and higher order. This is an intractable problem
high order polynomials and becomes quite complicated e
for a third order polynomial. The program is to consider on
the case of corrections around a parabolic peak inside
interval. This will generate an expansion that is correct
order t5.

C. The parabolic peak

We now consider the case where a single maximum
curs inside the interval. As noted above, for the maximum
occur inside the interval we must havec1;t. To keep track
of the expansion we define

f15tc1 , ~10!

u5
t

t
, ~11!

so that

Y5t2~uf11u2c21tu3c31t2u4c41t3u5c51••• !.
~12!

The extremum of such a parabola occurs at

u* 5u0* 1tu1* 1t2u2* 1t3u3* 1•••, ~13!

with

u0* 52
f1

2c2
,

u1* 52
3f1

2c3

8c2
3 ,

u2* 52
f1

3

16c2
5 ~9c3

224c2c4!,

u3* 52
5f1

4

128c2
7 ~27c3

3224c2c3c414c2
2c5!, ~14!

which gives
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2562 56REUVEN ZEITAK
Ytu* 5t2S 2
f1

2

4c2
2t

f1
3c3

8c2
3 1t2

f1
4

64c2
5 ~4c2c429c3

2!

2t3
f1

5

128c2
7 ~27c3

3224c2c3c414c2
2c5! D . ~15!

In order for the extremum to be in the right range w
demand that

0,u* ,1. ~16!

In addition we want the extremum to be a maximum so
demand that

c2,0. ~17!

Clearly the expansion foru* and Y* can be continued to
higher order. In order to be systematic int it is necessary to
include terms due to the third order polynomial peak as w
However, even without considering nonperturbative ter
due to the cubic, higher orders for the quadratic alone
still be useful since they produce an upper bound onF. This
point is discussed in the discussion.

D. Expansion for Ymax

To ordert5 we have

Ymax5u~Yt!Yt1V0,1~u* !u~2c2!@Ytu* 2u~Yt!Yt#,
~18!

which encodes the fact that the maximum is either at one
the interval ends or in the middle of the interval if a qu
dratic maximum is in the interval. We have defined the fun
tion

Va,b~z!51 for a,z,b and 0 elsewhere. ~19!

Since we need the moments ofYmax we note that

~Ymax!
n5$u~Yt!@12u~2c2!V0,1~u* !#Yt

1V0,1~u* !u~2c2!Ytu* %n

5u~Yt!@12u~2c2!V0,1~u* !#~Yt!
n1V0,1~u* !

3u~2c2!~Ytu* !n, ~20!

due to the projection properties ofu andV.
Thus we define

I n5u~Yt!~Yt!
n ~21!

and

Jn5V0,1~u* !u~2c2!@~Ytu* !n2u~Yt!~Yt!
n#, ~22!

with Ymax
n 5I n1Jn . Since we are interested in computing t

averages in Eq.~9!, we need to know how to integrat
Ymax

n over functions ofck . The main problem is theu and
V constraint functions. We can treat this systematically
small t. Let us consider the integrals ofI n ,Jn over test func-
tions of c1.
e

l.
s
n

of

-

r

E I nA~c1!dc15E
0

`

~Yt!
nA~c1!dc1

2E
0

b

~Yt!
nA~c1!dc1 ,

with b52(tc21t2c31t3c41t4c51•••). Both integrals
can be easily expanded in powers oft ~note thatb is small!.
This is just the linear approximation. Now we want to co
sider theJn terms. For this we have to expand the constra
0,u* ,1. Recalling Eqs.~13! and ~14!, we see that the
lower bound impliesf1.0 ~since c2,0); for the upper
bound we can solve forf1

. such thatu* (f1
.)51. An ex-

pansion int yields

f1
.522c22t~3c3!2t2~4c4!2t3~5c5! ~23!

so we have the constraint

0,c1,2@2tc21t2~3c3!1t3~4c4!1t4~5c5!1•••#.
~24!

In order to evaluate

Jn5V0,1~u* !u~2c2!@~Ytu* !n2u~Yt!~Yt!
n#

we gauge its effect on a test functionA(c1),

E A~c1!Jndc15E A~c1!V0,1~u* !u~2c2!

3@~Ytu* !n2u~Yt!~Yt!
n#dc1

5u~2c2!E
0

a

~Ytu* !nA~c1!dc1

2u~2c2!E
b

a

~Yt!
nA~c1!dc1 ,

with a52@2tc21t2(3c3)1t3(4c4)1t4(5c5)1•••#.
Now an expansion int is straightforward, leaving us with

Ymax5t@c1u~c1!#1t2@c2u~c1!#

1t3Fc3u~c1!1c2
2S 1

2
1

1

6
u~2c2! D d~c1!G

1t4Fc4u~c1!1c2c3S 11
1

2
u~2c2! D d~c1!

1c2
3S 1

6
1

u~2c2!

6 D d8~c1!G
1t5Fc5u~c1!1c3

2S 1

2
1

2

5
u~2c2! D d~c1!

1c2c4S 11
3

5
u~2c2! D d~c1!

1c2
2c3S 1

2
1

7

10
u~2c2! D d8~c1!
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1c2
4S 1

24
1

11

120
u~2c2! D d9~c1!G , ~25!

~Ymax!
25t2@u~c1!c1

2#1t3@2c1c2u~c1!#

1t4@~c2
212c1c3!u~c1!#

1t5H ~2c2c312c1c4!u~c1!

1c2
3F1

3
2

2

5
u~2c2!Gd~c1!J , ~26!

~Ymax!
35t3@c1

3u~c1!#1t4@3c1
2c2u~c1!#

1t5@~3c1c2
213c1

2c3!u~c1!#, ~27!

~Ymax!
45t4@c1

4u~c1!#1t5@4c1
3c2u~c1!#, ~28!

~Ymax!
55t5@c1

5u~c1!#. ~29!

This result is quite general, and is independent of our
sumption thatck are Gaussian random variables. In the f
lowing section we shall assume thatck are indeed random
Gaussian variables with~cross! correlations that are implied
by Eq. ~1!.

E. Averages

We will now proceed to compute averages of the ty
^Ymax

n d(Xmax2c0)&. We write schematically

c05h0 , ~30!

c15g1
1h1 , ~31!

c25g0
2h01g2

2h2 , ~32!

c35g1
3h11g3

3h3 , ~33!

c45g0
4h01g2

4h21g4
4h4 , ~34!

c55g1
5h11g3

5h31g5
5h5 , ~35!

where ^h ih j&5d i j The values ofg i
j in terms of ck of the

correlation function@Eq. ~1!# will be given in Appendix A. It
is useful to make the definitions

^c2
nc4

md~X2c0!&5Ln,m , ~36!

^c2
nc4

mu~2c2!d~X2c0!&5Tn,m , ~37!

whose explicit values are given in Appendix B. We find
s-
-

e

^Ymaxd~X2c0!&5t
g1

1

A2p
L0,01t2

1

2
L1,0

1t3F g1
3

A2p
L0,01

1

g1
1A2p

S L2,0

2
1

T2,0

6 D G
1t4S 1

2
L0,1D1t5F g1

5

A2p
L0,0

1
~g3

3!2

g1
1A2p

S L0,0

2
1

2T0,0

5 D1
1

g1
1A2p

S L1,1

1
3T1,1

5 D
2S L2,0

2
1

7T2,0

10 D g1
3

~g1
1!2A2p

2S L4,0

24
1

11T4,0

120 D 1

~g1
1!3A2p

G , ~38!

^Ymax
2 d~X2c0!&

5t2
~g1

1!2

2
L0,0~X!1t3

2g1
1

A2p
L1,01t4S g1

1g1
3L0,01

1

2
L2,0D

1t5F 2g1
3

A2p
L1,01

2g1
1

A2p
L0,11

1

g1
1A2p

S L3,0

3
2

2T3,0

5 D G ,

~39!

^Ymax
3 d~X2c0!&5t3

2~g1
1!3

A2p
L0,01t4

3~g1
1!2

2
L1,0

1t5S 3L2,0

g1
1

A2p
1

6~g1
1!2g1

3

A2p
L0,0D ,

~40!

^Ymax
4 d~X2c0!&5t4

3~g1
1!4

2
L0,01t5L1,0

8~g1
1!3

A2p
, ~41!

^Ymax
5 d~X2c0!&5t5

8~g1
1!5

A2p
L0,0. ~42!

All the integrations and substitutions are best left to
computer algebra package~in this caseMATHEMATICA !.

We get that
1

2
F~ t !5

1

2
2

g1
1

2p
t1

12g0
2~g1

1!214~g1
1!4212g1

1g1
327~g2

2!2

24g1
1p

t31S 2@~g0
2!2g1

1#

2p
1

g0
4g1

1

2p
2

g0
2~g1

1!3

2p
2

~g1
1!5

10p
1

g0
2g1

3

2p

1
~g1

1!2g1
3

2p
1

g0
2~g2

2!2

10g1
1 p

1
g1

1~g2
2!2

4p
2

80~g1
1!3g1

5268g1
1g1

3~g2
2!2221~g2

2!41104~g1
1!2g2

2g2
4156~g1

1!2~g3
3!2

160~g1
1!3p D t5.

~43!
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This expression becomes much simpler when written
terms of the correlation function’s coefficients

F~ t !512
A22c2

p
t1

6c42c2
2

12A22c2p
t3

1
43c2

42260c2
2c4220c4

2180c2c6

160A22c2c2p
t51 h.o.t.,

~44!

where h.o.t. represents higher order terms. This is the m
result of this work. The first order term is exactly the dens
of crossings. This is as expected since if the size of
intersection becomes infinitesimal, the probability of
crossing tends to 1 with a correction that is equal to
interval lengtht divided by the average distance betwe
crossingŝ l &. Hence we expect

F~ t !512
t

^ l &
1h.o.t. ~45!

The cubic and quintic terms to our knowledge have not b
computed before.

III. COMPARISONS

It is instructive to compare the exact expansion to
approximate results of Ref.@11#. In that work, the authors
have an approximate closed formula for the Laplace tra
form of the probabilityp(t) to find a spacing of sizet be-
tween consecutive zero crossings.

p̃~l!approx5
12@l2P̃1~l!2l# p̃8~0!

11@l2P̃1~l!2l# p̃8~0!
, ~46!

where P̃1(l) is the Laplace transform ofP1(t), the prob-
ability thatX(0)X(t).0. In terms of the correlation function
C(t) one has

P̃1~l!5
1

l
1

1

plE0

`

e2l l
C8~ l !

A12C~ l !2
dl ~47!

~see Ref.@11# for details!. The expression forp(t), Eq. ~46!,
can be inverted for smallt ~that is, largel) to yield

p~ t !approx5
c2

226c4

4c2
t

1
217c2

41108c2
2c41156c4

22480c2c6

96c2
2

t31h.o.t.

~48!

The result of this expansion forC( l )51/cosh(l/2) is

p~ l !5
l

8
2

3l 3

128
1

15l 5

4096
1••• . ~49!

This expression is slightly different than the one given
Ref. @25# of @11# where Eq. ~48! was computed for
n

in

e

e

n

e

s-

C( l )51/coshl but mistakenly attributed to C( l )
51/cosh(l/2) due to a misprint.

In order to compare to the exact expression, we recall
F(t) is the probability that the interval@0,t# is free of cross-
ings, so it can be expressed as

F~ t !5
1

^x&Et

`

~x2t !p~x!dx, ~50!

with ^x&5*0
`xp(x)dx5p/A22c2 the average free interva

size.
Thus

p~ t !5^x&F9~ t !

5
c2

226c4

4c2
t1

243c2
41260c2

2c4120c4
2280c2c6

16c2
2

t3

1h.o.t. ~51!

Notice that the first term of the approximate expression~48!
agrees with the exact expression, but the next term is dif
ent. For example, for the correlation function given abo
C( l )51/coshl/2, we find that

p~ t !5
t

8
1

25t3

192
1••• . ~52!

In addition, we have performed some simulations to fi
the crossing distribution for several Gaussian processes.
considered a fifth order polynomial with Gaussian rand
correlated coefficients of the type~7! that are defined via
Appendix A. Figure 1 plots the probability density to find th
first zero crossing at a given time@which is just2F8(t)# and
the expansion of2F8(t) to ordert4. A very good agreemen
is found in the range@0,0.8#.

The increase in the simulated estimate ofF8(t) that ap-
pears aftert;0.9 may appear puzzling since according
Eq. ~50! 2F8(t)5(1/̂ x&)* t

`(t)p(x)dx which is clearly
monotonically decreasing. The resolution of this is to rec
that the Gaussian process that is being simulated is on
polynomial approximation to a stationary process, accur
for short times, for larger times it is a nonstationary proce
and the probabilityp(t) to find a spacing of sizet between
consecutive zero crossings is defined only for stationary p
cesses. The correct interpretation of2F8(t) is the probabil-
ity density to find the first zero crossing beyondt50 at a
given time. This object need not be monotonic.

IV. DISCUSSION

A major shortcoming of the expansion derived in th
work is the difficulty in calculating higher order terms. Fo
lowing the method described above, one needs to integ
over the volume in the phase space of polynomial coe
cients for which a polynomial never crosses zero in the
terval @0,t#. The function to integrate over is a multivaria
Gaussian with a quadratic form determined from the cor
lation function of the original problem. The shape of th
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FIG. 1. The probability that the first zero
crossing ~after t50) occurs at t versus t.
The random processes used are polynomials
order t5 with coefficientsc1 , . . . ,c5 that are
Gaussian variables of form~30! with g ’s given
by Eq. ~A4!. The correlation functions taken ar
C(t)51/Acosh(t/2) ~circles! and C(t)51/
cosh(t/2) ~squares!. The averages were
performed over several tens of 106 of realiza-
tions. The solid lines are the results predict
by Eq. ~44!. The expansions are, respec
ively, 2F8(t)50.056 269 820.002 637 65t2

20.000 563 247t4 and 2F8(t)50.079 577 5
20.004 973 75t2 20.002 590 34t4. Each graph
is shown with the zeroth order term subtracted
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region in phase space becomes increasingly complicate
higher orders int are probed. This limits the feasible numb
of terms that can be obtained using this method. It would
difficult if not impossible to calculate enough terms to e
tract via Pade´ approximants or other methods the asympto
exponential decay rate expected forF(t) @11#.

Although nominally the expansion is for short times, w
can also view the expansion as one inthe number of extrema
inside the region. If there are no~local! extrema inside the
region, it is sufficient to consider the end points. We th
might use

Ymax
02peak5u~Yt!Yt ~53!

to compute~either exactly or by perturbations! the value of
F02peak(t). For one extremum, the parabolic approximati
is sufficient etc. This is equivalent to performing a part
resummation and is an upper bound onF(t). This can be
seen by recalling that we are computing the probability t
all the ~local! extrema that we have considered are negat
Taking into account more extrema can only decrease
probability. A simple calculation gives

F02peak~ t !52
A12C~ t !2

2p E
p

~7/4!p

3
du

cos2~u!12@12C~ t !#@sin2~u!1sin~u!cos~u!#
~54!

or,

F02peak~ t !512
2

p
arctanSA12C~ t !

11C~ t ! D , ~55!

whose larget asymptotics yields

F~ t !,
2

p
C~ t ! for large t. ~56!
as

e

c

n

l

t
e.
is

This is a trivial observation: for all points to be positive, th
two end points must be positive. A more sophisticated~but
not rigorous! way of using this information was given in
@11#.

The single peak contribution cannot be resummed so
ily, although a perturbation expansion can be produced q
straightforwardly to higher orders. Such a series should p
duce a more stringent bound on theF(t) and is much simpler
technically than the full expansion. In addition, an estimat
of the asymptotic decay rate of this series can produc
better bound on the asymptotics ofF(t). Such an expansion
is beyond the scope of this paper.

Finally, it would be interesting to try and apply thi
method to cases in which the Gaussian process is a surfa~a
random ‘‘sheet’’!. Instead of asking about intervals in whic
the walk is positive, one asks about connected regions
are all positive~‘‘islands’’ !. This problem is known to ex-
hibit some interesting features@14#. This method, if it could
be extended, could shed some light on this problem.
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APPENDIX A

In this appendix we decompose a Gaussian proc
X(t) with a correlation function

^X~ t !X~ t1t!&5C~t!511c2t21c4t41c6t61•••

~A1!

into

X~t!5c01tc11t2c21t3c31••• , ~A2!

where ck’s are correlated Gaussian random variables.
see that
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^X~e!X~t!&5^c0
2&1~e1t!^c0c1&

1@te^c1
2&1~e21t2!^c0c2&#1••• .

~A3!

By expanding ine and comparing toC(t2e) we see that
ck have the form~30! with g ’s given by

g1
15A22c2,

g0
25c2 ,

g2
25A6c42~g0

2!2,

g1
3524c4 /g1

1 ,

g3
35A220c62~g1

3!2,

g0
45c4 ,

g2
45~15c62g0

2g0
4!/g2

2 ,

g4
45A70c82~g2

4!22~g0
4!2,

g1
5526c6 /g1

1 ,

g3
55~258c82~g1

5!2!/g3
3 ,

g5
55A2252c10. ~A4!

Note that demanding real values for theg ’s imposes a set o
constraints on the coefficients of the correlation functio
These ‘‘realizability’’ constraints are due to the fact that t
eigenvalues of the correlation matrix must all be no
negative in order to ensure the normalizability of the Gau
ian process.

APPENDIX B

The integrals

^c2
nc4

md~X2c0!&5Ln,m , ~B1!

^c2
nc4

mu~2c2!d~X2c0!&5Tn,m ~B2!

are given by
se

v.
.

-
-

Ln,m5^~g0
2X1g2

2h2!n~g0
4X1g2

4h21g4
4h4!m&P0~X!,

~B3!

Tn,m5^~g0
2X1g2

2h2!n~g0
4X1g2

4h21g4
4h4!m

3u~2g0
2x2g2

2h2!&P0~x!. ~B4!

For the values ofn,m that are required for our expansion w
have

L005e2X2/2/A2p,

L105g0
2XL00~X!,

L205@~g0
2X!21~g2

2!2#L00~X!,

L305@~g0
2X!313g0

2X~g2
2!2#L00~X!,

L405@~g0
2X!416~g0

2X!2~g2
2!213~g2

2!4#L00~X!,

L015g0
4XL00~X!,

L115~g0
2g0

4X21g2
2g2

4!L00~X!,

T005 f 0~X!L00~X!,

T205@~g0
2X!2f 0~X!12g0

2g2
2X f1~X!1~g2

2!2f 2~X!#L00~X!,

T305@~g0
2X!3f 0~X!13~g0

2X!2g2
2f 1~X!13g0

2X~g2
2!2f 2~X!

1~g2
2!3f 3~X!#L00~X!,

T405@~g0
2X!4f 0~X!14~g0

2X!3g2
2f 1~X!

16~g0
2X!2~g2

2!2f 2~X!14g0
2X~g2

2!3f 3~X!

1~g2
2!4f 4~X!#L00~X!,

T115@g0
2g0

4X2f 0~X!1X~g0
2g2

41g2
2g0

4! f 1~X!

1g2
2g2

4f 2~X!#L00~X!, ~B5!

where we have defined the functions

f k~X!5
1

A2p
E

2`

2g0
2x/g2

2

yke2y2/2dy. ~B6!
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